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• We use best practices in transcriptomic processing 
(TPM normalization).

• We select genes with the clearest spatial patterns 
as prediction variables (Moran’s I).

• Pepper noise in the data is addressed using a 
modified adaptive median filter (only for training).

• We predict relative changes from the mean of 
each gene instead of absolute expression.

• The local learning stage trains an image encoder to 
predict gene expression.

• Graphs are constructed with neighbors’ features.
• In the spatial learning stage, a graph neural network 

module integrates information from of neighboring 
patches and predicts a spatial correction.

• SEPAL obtains state-
of-the-art results in 
two breast cancer 
datasets.

• Our method 
outperforms both 
local and global 
models.

• Prediction of deltas instead of absolute 
values of expression improves 
performance. This result is probably 
derived from the fact that the model 
does not have to learn priors and can 
focus on the physiological variation in 
the data.

• Using graphs to include spatial context 
improves over local prediction and 
outperforms increasing patch scale.

• SEPAL bridges the gap between local and 
global methods leveraging small sample 
sizes while also being able to include 
spatial context.

• We use spatial transcriptomics data to predict gene 
expression vectors from histology images.

• Global methods overfit due to lack of data and local methods 
cannot include visual context.

• We leverage upon both global and local analysis using spatial 
neighbors to inform the prediction.
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• Easiest genes show 
significant correlation but 
oversmoothed output.

• The most difficult genes are 
predicted to be 
approximately constant.

4. Main Results

5.Qualitative Results

• Just predicting relative differences 
already  gives state-of-the-art 
performance. 

• Adding visual context by increasing 
patch size is not as effective as our 
graph processing approach. 
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